Tightness of M-Estimators for Multiple Linear Regression in Time for Multiple Linear Regression in Time Series
نویسندگان
چکیده
منابع مشابه
Some Modifications to Calculate Regression Coefficients in Multiple Linear Regression
In a multiple linear regression model, there are instances where one has to update the regression parameters. In such models as new data become available, by adding one row to the design matrix, the least-squares estimates for the parameters must be updated to reflect the impact of the new data. We will modify two existing methods of calculating regression coefficients in multiple linear regres...
متن کاملStein Type Estimators for Disturbance Variance in Linear Regression Model
This article has no abstract.
متن کاملa time-series analysis of the demand for life insurance in iran
با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند
Theil-Sen Estimators in a Multiple Linear Regression Model
In this article, we propose the Theil-Sen estimators of parameters in a multiple linear regression model based on a multivariate median, generalizing the Theil-Sen estimator in a simple linear regression model. The proposed estimator is shown to be robust, consistent and asymptotically normal under mild conditions, and super-efficient when the error distribution is discontinuous. It can be chos...
متن کاملLinear Regression Under Multiple
This dissertation studies the least squares estimator of a trend parameter in a simple linear regression model with multiple changepoints when the changepoint times are known. The error component in the model is allowed to be autocorrelated. The least squares estimator of the trend and the variance of the trend estimator are derived. Consistency and asymptotic normality of the trend estimator a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2016
ISSN: 1556-5068
DOI: 10.2139/ssrn.2794851